UEC at TRECVID 2011 SIN and MED task

نویسندگان

  • Kazuya Hizume
  • Keiji Yanai
چکیده

In this paper, we describe our approach and results for the semantics indexing (SIN) task and Multimedia event detection (MED) task at TRECVID2011. In our runs of SIN task, we used six features, spatiotemporal (ST) features, SURF, color, face, sound features and word histogram. This year, we use multiple frames selected by calculating the color difference between frames, not all frame. All runs used Multiple Kernel Learning as a fusion method to combine all these features in the same way as last year. Our submitted runs are as follows: • UEC1 1: SURF, color, ST, face, sound features • UEC2 2: Run1 & word histogram • UEC3 3: Run2 & sort using a category and video name • UEC4 4: Run2 with TRECVID 2010 training data As a result of the full-category SIN task, Run4 yielded the best performance (infAP=0.0452) among four runs. In MED task, we divide videos to shots which is 150 frames at most and extract SURF, color, ST features from shots. We get the average of the top three shot scores as the original video score.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UEC at TRECVID 2012 SIN and MED task

In this paper, we describe our approach and results for the semantics indexing (SIN) task and Multimedia event detection (MED) task at TRECVID2012. In our run of SIN task, we used three features, spatio-temporal (ST) features, SURF and color features. This year, we use all frame to extract features. This run used Multiple Kernel Learning as a fusion method to combine all these features in the s...

متن کامل

UEC at TRECVID 2010 Semantic Indexing Task

In this paper, we describe our approach and results for the semantics indexing task (SIN) at TRECVID2010. This year, we focused on spatiotemporal features using multi-frame informations, and we used Multiple Kernel Learning as a fusion method to combine all these features in the same way as last year. Our submitted runs are as follows:

متن کامل

ITI-CERTH participation to TRECVID 2011

This paper provides an overview of the tasks submitted to TRECVID 2011 by ITI-CERTH. ITICERTH participated in the Known-item search (KIS) as well as in the Semantic Indexing (SIN) and the Event Detection in Internet Multimedia (MED) tasks. In the SIN task, techniques are developed, which combine motion information with existing well-performing descriptors such as SURF, Random Forests and Bag-of...

متن کامل

UEC at TRECVID 2008 High Level Feature Task

In this paper, we describe our approach and results for high-level feature extraction task (HLF) at TRECVID2008. This year, our focus is to develop a framework which fuses a number of features effectively. In our paper, color , face, motion, text, and local pattern features were extracted. After that, a simplymodified version of Adaboost algorithm was implemented as a late fusion to combine all...

متن کامل

TRECVid 2011 Experiments at Dublin City University

This year the iAd-DCU team participated in three of the assigned TRECVid 2011 tasks; Semantic Indexing (SIN), Interactive Known-Item Search (KIS) and Multimedia Event Detection (MED). For the SIN task we presented three full runs using global features, local features and fusion of global, local features and relationships between concepts respectively. The evaluation results show that local feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011